Avoidance-Related EEG Asymmetry Predicts Circulating Interleukin-6
Grant S. Shields and Wesley G. Moons

CITATION
http://dx.doi.org/10.1037/emo0000120
Avoidance-Related EEG Asymmetry Predicts Circulating Interleukin-6

Grant S. Shields
University of California, Davis

Wesley G. Moons
Moons Strategic Media, San Diego, California

Recent research has linked avoidance-oriented motivational states to elevated pro-inflammatory cytokine levels. According to one of many theories regarding the association between avoidance and cytokine levels, because the evolutionarily basic avoidance system may be activated when an organism is threatened or overwhelmed, an associated inflammatory response may be adaptive for dealing with potential injury in such threatening situations. To examine this hypothesis, we tested whether the neural correlate of avoidance motivation associates with baseline levels of the circulating pro-inflammatory cytokine interleukin-6 (IL-6). Controlling for covariates, greater resting neural activity in the right frontal cortex relative to the left frontal cortex—the neural correlate of avoidance motivation—was associated with baseline IL-6. These results thus support the hypothesis that the avoidance motivational system may be closely linked to systemic inflammatory activity.

Keywords: avoidance motivation, frontal asymmetry, interleukin-6 (IL-6), MIDUS, cytokines
Inflammatory activity can be assessed by plasma levels of the cytokine interleukin-6 (IL-6), which fluctuate reliably in response to psychological factors (Segerstrom & Miller, 2004) and serve as a reliable index of inflammation within an organism (Ohzato et al., 1992). Moreover, IL-6 is clinically relevant, as it plays a causal role in the development and exacerbation of inflammatory diseases, such as coronary heart disease (IL6R MR Consortium, 2012), which makes understanding IL-6 and its associates a top priority for public health (Slavich, 2015). Thus, if the avoidance system shares a connection to inflammatory processes, then relatively greater baseline right frontal activity—reflective of avoidance orientation—should associate with higher levels of baseline IL-6. We tested this hypothesis by performing a secondary data analysis of the project Midlife in the United States (MIDUS) II (Ryff & Davidson, 2010; Ryff, Seeman, & Weinstein, 2010), which explored factors that influence midlife health in America.

Method

Participants

Participants were contacted for the MIDUS study (Ryff & Davidson, 2010; Ryff et al., 2010) through a random-digit dial across the United States, i.e., a national random sample. Our sample included the 331 individuals who completed both the neuroscience and the biomarker MIDUS projects, 308 of whom were right-handed. Consistent with approach/avoidance literature (Sutton & Davidson, 1997), we excluded left-handed participants, leaving 308 participants, nine of whom had missing electroencephalogram (EEG) data. As discussed here later, our analysis followed published recommendations and excluded another 141 participants, leaving our final sample at 158 participants. Of these participants, 66% identified their racial origins as White, 30.2% as Black/African American, 0.6% as Native American or Alaska Native/Eskimo, 0.6% as Asian, and 2% as Other.

Materials

Interleukin-6. A fasting blood draw was taken during the MIDUS biomarker project (Ryff et al., 2010). Blood was centrifuged on site and stored in a −60 °C to −80 °C freezer. Samples were then shipped on a monthly basis to the MIDUS Biocore Lab on dry ice, where they were stored at −65 °C until assayed. The Quantikine High-Sensitivity Enzyme-Linked Immunosorbent Assay (ELISA) kit (R&D Systems, Minneapolis, MN) was used to measure IL-6. Detectable range was 0.156–10 pg/mL. Interassay coefficient of variation (CV) was 12.31%; intra-assay CV was 3.25%. Although there were missing IL-6 data in the overall biomarker project sample, there were no undetectable or missing values of IL-6 in the sample of participants used in this study.

EEG data. A 128-channel geodesic net (Electrical Geodesics, Inc., Eugene, OR) of saline-dampened, sponge-encased silver metal/silver chloride (Ag/AgCl) electrodes was used to record EEG activity. Signals were sampled at a rate of 500 Hz (band-pass filtered from 0–100 Hz) after amplification. Recordings were filtered using 60-Hz notch and 0.5-Hz high-pass filtering. Data were submitted to a principal components analysis/independent components analysis (PCA/ICA), forcing the identification of 20 components. Subsequently, artifacts were removed. Epochs, 2 s each, were then created; the average spectral power densities for each participant were computed from each of the 2-s epochs for each electrode. The spectra were then averaged across these epochs. Individual measures of upper (10 Hz to 13 Hz) and lower (8 Hz to 10 Hz) α bands were created by averaging the power within these bands separately. These average values were subsequently log-transformed to normalize the distribution. Laterality scores were calculated for each pair of electrodes in both α frequencies by subtracting the α power of the left hemisphere from the α power of the right hemisphere.

We used the laterality scores derived from the FP1/FP2 (fronto-polar), F3/F4 (frontal), and F7/F8 electrodes in analysis, as they comprise the frontal electrode pairs in the MIDUS dataset (Ryff & Davidson, 2010; Ryff et al., 2010), and because each of these pairs has previously been linked to approach/avoidance (e.g., Sutton & Davidson, 1997; Prause, Staley, & Roberts, 2014). Because greater α power typically indicates inhibition of a neural area, greater α power is often conceptualized to indicate a reduction in the processes linked to that area (Ryff & Davidson, 2010). Consequently, higher laterality scores (i.e., relatively greater right-sided α power) indicate greater left-hemisphere activity (i.e., approach motivation) than right-hemisphere activity (i.e., avoidance motivation).

Procedure

Participants reported to one of three MIDUS (Ryff & Davidson, 2010; Ryff et al., 2010) general clinical research centers for an onsite, overnight study. On day two, a fasting blood draw was taken between 6:30 and 7:00 a.m., from which IL-6 was assayed. If participants awoke before the blood draw, they were instructed to engage in no physical activities. Participants who also completed the neuroscience project later went to the University of Wisconsin–Madison campus, where their resting EEG activity was recorded.

Data Reduction and Analysis

We log-transformed body-mass index (BMI) and IL-6 to normalize their distributions. We created the overall frontal asymmetry score by standardizing and then averaging the laterality scores from the FP1/FP2, F3/F4, and F7/F8 electrodes across both α frequencies. This score thus provides an index of total frontal asymmetry.

Our analytic strategy followed O’Connor et al.’s (2009) recommendations. We described diet, fitness level, menopausal status, medication use, and smoking history. We controlled for age, sex, socioeconomic status (i.e., standardizing and then averaging income and education), smoking history (dummy-coded; 0 = never...
smoked), ethnicity/race (dummy-coded; 0 = White ethnicity/race), BMI, alcohol use, sleep quality (scores on the Pittsburgh Sleep Quality Inventory (PSQI; Fichtenberg, Putnam, Mann, Zafonte, & Millard, 2001), aspirin dosage, statin use (dummy-coded; 0 = nonuse),7 and antihypertensive use (dummy-coded; 0 = nonuse). Finally, we excluded excessive coffee/caffeine drinkers (>10 cups/day), current smokers, heavy alcohol drinkers (>14 drinks/week for women and >20 drinks/week for men), individuals with sleep disorders (above a clinical cutoff on the PSQI; Fichtenberg et al., 2001), and individuals taking antidepressants or corticosteroids.8 The MIDUS (Ryff & Davidson, 2010; Ryff et al., 2010) 2-day procedure ensured against acute exercise, caffeine use, and acute sleep deprivation.

To assess whether any outliers significantly influenced the association between frontal asymmetry and IL-6, we assessed the standardized differences of β (DFBETAs), which quantify the effect of each observation on the slope, regressing one variable on another (Cohen, Cohen, West & Aiken, 2003). A significant DFBETA value is DFBETA >±2/√N, or in this sample, DFBETA >±0.44. Similarly, to assess outliers within the entire regression model, we examined externally standardized residuals, which quantify how different a given observation’s residual is from the average residual in the model. Significant outlying observations are those with an externally standardized residual >±3.

Results

Descriptive Statistics

Of the 299 right-handed participants with usable data, 55 participants were current smokers, 41 were on antidepressants, 16 were on corticosteroids, three drank more than 10 cups of coffee per day, two drank alcohol heavily, and 74 had a sleep disorder. We excluded all participants in the above conditions (141 total). In the final sample of 158 participants, 91 participants were women, 68 followed a special diet, 50 regularly engaged in moderate-to-vigorous exercise, 61 were former smokers, 100 took at least one prescription drug, 39 took statin medication, 57 took antihypertensives, 39 took aspirin, and 28 of the women had entered menopause. Participant age in this sample ranged from 37 to 83, M = 57.26, SD = 11.56.

Asymmetry and IL-6

In a bivariate analysis, frontal asymmetry correlated with IL-6, r = −.191, p = .016. As Table 1 illustrates, even after controlling for age, gender, sleep quality, BMI, smoking history, socioeconomic status, aspirin dosage, race/ethnicity, alcohol use, and the use of antihypertensive or statin medication, frontal asymmetry remained significantly associated with circulating IL-6, β = −.156, t(142) = −2.156, p = .033, ΔR² = .021. Figure 1 illustrates this association. Examination of DFBETAs revealed no influential outliers on the slope regressing IL-6 on frontal asymmetry (all DFBETAs <±0.16). Removal of all variable cases contributing to externally standardized residuals >±3 in the overall model only strengthened the association: Frontal asymmetry remained significantly associated with IL-6 even after outliers were removed, β = −.171, t(138) = −2.399, p = .018, ΔR² = .025. Finally, the relation between frontal asymmetry and IL-6 was not moderated by

6 O’Connor et al. (2009) recommend potentially controlling for former smoking status. In our sample, former smoking status significantly predicted IL-6, p = .034, so we chose to statistically control for former smoking status.

7 We were not able to control for the dosage of statins or antihypertensives, as participants took multiple different types of these medications.

8 Including depressive symptomatology as a covariate, which was not discussed by O’Connor et al. (2009), did not alter the results.

Table 1
Regression Analysis of Interleukin-6 on Covariates and Frontal Asymmetry

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE B</td>
</tr>
<tr>
<td>Intercept</td>
<td>−5.354</td>
<td>.971</td>
</tr>
<tr>
<td>Female gender</td>
<td>−.101</td>
<td>.110</td>
</tr>
<tr>
<td>Age</td>
<td>.010</td>
<td>.006</td>
</tr>
<tr>
<td>Body-mass index</td>
<td>1.605</td>
<td>.273</td>
</tr>
<tr>
<td>Sleep problems</td>
<td>−.032</td>
<td>.023</td>
</tr>
<tr>
<td>Alcohol-use frequency</td>
<td>.015</td>
<td>.050</td>
</tr>
<tr>
<td>Former smoker</td>
<td>.158</td>
<td>.115</td>
</tr>
<tr>
<td>Blood-pressure med use</td>
<td>.055</td>
<td>.127</td>
</tr>
<tr>
<td>Statin med use</td>
<td>−.070</td>
<td>.136</td>
</tr>
<tr>
<td>Aspirin dose</td>
<td>.000</td>
<td>.001</td>
</tr>
<tr>
<td>Socioeconomic status</td>
<td>.009</td>
<td>.072</td>
</tr>
<tr>
<td>Black ethnicity</td>
<td>.316</td>
<td>.126</td>
</tr>
<tr>
<td>Native American ethnicity</td>
<td>.112</td>
<td>.471</td>
</tr>
<tr>
<td>Asian ethnicity</td>
<td>−.011</td>
<td>.657</td>
</tr>
<tr>
<td>Other ethnicity</td>
<td>−.570</td>
<td>.392</td>
</tr>
<tr>
<td>Frontal asymmetry</td>
<td>−.150</td>
<td>.070</td>
</tr>
</tbody>
</table>

ΔR² = .334***

F for ΔR² = 5.12***

p < .10. *p < .05. ***p < .001.
any covariate (all ps > .120). Thus, we found a reliable pattern linking the neural correlate of avoidance orientation to inflammatory activity.

Discussion

This study adds to the growing body of literature relating inflammatory markers to neuropsychological variables (e.g., Master et al., 2009; Moons et al., 2010). In particular, we found that the neural correlate of avoidance significantly associated with baseline levels of the pro-inflammatory cytokine IL-6. More specifically, resting asymmetry in the brain’s frontal cortex associated with baseline IL-6, such that greater right frontal activity was associated with higher IL-6. These findings are therefore consistent with Moons et al.’s (2010) suggestion that the human avoidance system is linked to inflammatory processes.

It should be noted that the effect size relating IL-6 to frontal asymmetry was small by traditional statistical convention. Although this may be seen as cause for concern, it is worth noting that a 1-SD increase in right frontal asymmetry was associated with an IL-6 increase that predicts an 18% increased risk for developing coronary heart disease (Danesh et al., 2008), making the effect size obtained in this manuscript far from trivial.

Although the link between IL-6 and avoidance is potentially adaptive in the short term (Dhabhar, 2002), the health implications of this link are speculative. Higher baseline levels of IL-6 may continue to facilitate rapid recovery from injury (e.g., Dhabhar, 2002) or provide some other adaptive value within the context of dispositional avoidance. Conversely, higher baseline IL-6 may also be maladaptive, contributing to allostatic load. Future researchers should attempt to elucidate the health outcomes of dispositional avoidance to understand the consequences of these findings.

Our findings are similar to those of Master et al. (2009), who found an association between baseline oral-mucosal IL-6 and frontal EEG asymmetry. However, the results of Master et al. (2009) differ from the results of this study. Most important to note is that Master et al. (2009) did not intend to study the neural basis of avoidance in relation to cytokine levels; they were investigating a specific form of emotional coping, which led to their analyses using an electrode pair, FP1 and FP2, which is more strongly associated with mood than with avoidance orientation (Papousek & Schulte, 2002). In contrast, in the current study we examined total frontal asymmetry. The results of the current study thus allow for a discussion of the relationship of pro-inflammatory cytokines and the neural correlate of avoidance, which, to our knowledge, is the first time this association has been demonstrated.

There are at least two possible explanations for this study’s findings. One explanation is that the upregulation of cytokines in situations involving avoidance is an adaptation to promote healing (Moons et al., 2010). Individuals who are typically avoidant may view themselves as less able to engage the world around them, which may translate into a pervasive sense of vulnerability to harm or infection. Under this view, then, the relationship between avoidance-related neural activity and pro-inflammatory cytokines is seen as a biological adaptation that promotes and maintains health.

A second explanation of these findings, which is not opposed to the first, notes the avoidance-oriented sickness behaviors brought about by increases in some cytokines (e.g., Dantzer, 2001). For example, withdrawal characteristics of sickness behaviors could increase the distance between an organism and a potential opponent or threat, which could benefit the organism. Cytokines could then facilitate further avoidance of a potentially harmful stressor.

This study has limitations. First, IL-6 is one of many pro-inflammatory immune system proteins; others, such as tumor necrosis factor α (TNF-α), may have different relationships with avoidance neural activity—future researchers should explore this relationship...
with other pro-inflammatory cytokines. Second, the single time point for sample collection is a limitation; future researchers should longitudinally examine these variables. Finally, it should be emphasized that the directionality of these results is unknown. Future researchers should attempt to elucidate the causal pathways involved.

Conclusion

We have demonstrated that the neural correlate of avoidance was significantly associated with the cytokine IL-6, even after controlling for all relevant covariates. Although we posited two explanations for this association revolving around physiological and behavioral adaptations, further research is needed to elucidate the causal mechanisms underlying this association. However, the current evidence suggests that the basic motivational systems of avoidance and approach are potentially important factors in inflammatory processes and, consequently, health outcomes.

References

Received April 9, 2015
Revision received August 10, 2015
Accepted August 18, 2015